LCC '22 Contest 1 S3 - Candy Pathways

Time limit: 4.0sMemory limit: 128MJava: 6.0sPython: 256MPython: 6.0sPython: 256M

After escaping the flying eggs and finding used candy, you decide to do some trick-or-treating yourself! Your neighborhood has N houses with M roads connecting them. You live in house 1 and want to travel along these roads to reach your friend's house N. There are T types of candy and M roads, with each road i serving candy of type t_i . For every road i that you traverse, you will receive one candy of type t_i . Since you don't want cavities, you want to reach your friend's house while collecting **at most one** of each type of candy. How many distinct paths can you take from house 1 to house N while satisfying this constraint?

A few important things to note:

- Since the answer can be quite large, please output the answer modulo 10^9+7 .
- Your paths do not have to be simple (i.e. they may contain cycles).
- Once you reach house N, you may not traverse any more edges.
- Two paths are different if for some i, the ith edge on one path is different from the ith edge on the other.
- There may be multiple roads connecting the same pair of houses but no edge will connect the same house (e.g. $u_i \neq v_i$ holds true).
- The graph is not guaranteed to be connected.

Constraints

In all test cases, $2 \leq N \leq 18, 1 \leq T \leq 18, 1 \leq M \leq N^2.$

Note: You must solve all preceding subtasks in order to earn points for a specific subtask.

Subtask 1 [10%]

 $N,T \leq 8$; in addition, the graph is guaranteed to form a tree (i.e. M = N - 1, no cycles exist, and the graph is connected).

Subtask 2 [20%]

 $N,T \leq 8$

Subtask 3 [70%]

No further constraints.

Input Specification

First line: N, M, and T: the number of houses, number of roads, and number of candy types respectively.

Next M lines: u_i , v_i , and t_i ($1 \le u_i$, $v_i \le N$, $u_i \ne v_i$, $1 \le t_i \le T$), indicating a bidirectional road that connects houses u_i and v_i and serves candy of type t_i .

Output Specification

One integer: the number of distinct paths you can take while satisfying the described constraint modulo $10^9 + 7$.

Sample Input 1

675			
211			
232			
242			
352			
253			
564			
455			

Output for Sample Case 1

2

Explanation for Sample Case 1

See a diagram of the neighbourhood below:

Explanation for Sample Case 1

The two ways to reach node N without receiving duplicate candies are

 $1 \rightarrow 2 \rightarrow 5 \rightarrow 6$ and

 $1 \rightarrow 2 \rightarrow 4 \rightarrow 5 \rightarrow 6.$

Sample Input 2

441		
121		
131		
241		
341		

Output for Sample Case 2

Explanation for Sample Case 2

There is no possible sequence of roads you can traverse without receiving duplicate candy.