LCC Takeup

By Max, Peter, Kenneth, and ChrisT

LCC 20 Contest 2 J1 - Predicting Stonks

Observe that in order for Ronald to guaranteed a purchase, he must have made one
prediction for every combination of how the price will change.

If he is predicting for 1 day, there are 3 If he is predicting for 2 days, there are 9
possible combinations. possible combinations.

44 - %/)/\\ !%

Each day, the number of combination is three times the previous day. The solution is to
raise 3 to the k-th power.

LCC 20 Contest 2 J2 - Mocking Case

For this problem store the case of the last letter in a variable. The following letter
(excluding punctuation characters) should have the opposite case, and remember to
update the variable. This can be accomplished using string methods.

Time complexity: O(ISI)

LCC 20 Contest 2 J3 - Alan’s Showmen

To solve this problem, store the height of tallest snowman so far, h. The minimum
number of snowballs needed to add to the current snowman with height a.ish - a.

Because 32-bit integers are not sufficient for this problem, it is required to use your
language’s 64-bit integer. This would be long in Java or long long in C/C++.

Time complexity: O(N)

LCC ‘20 Contest 2 14 - IPv5

Store each IP address as an array of integers.

It can help to make a function that compares 2 IP addresses x and y. For each block
from O to N-1, check whether x. is less than, equal, or greater than y.. If it is less than,
then x<y. If it is greater than, then x> y. If they are equal, check the following block.

Then simply count the number of IP addresses that are in any of the ranges. It is

possible to determine if an IP address is in any of the ranges by looping through all the
ranges.

Time complexity: O(NM)

LCC ‘20 Contest 2)5 - AQT’s Tree

First Subtask: The number of nodes in the tree is relatively small so we can just
simulate the deletion of the edges. We will use an adjacency list/matrix to store our
graph. To delete an edge just use a built in O(N) (O(1) if using matrix) deletion function,
l.e. erase in C++ After every deletion we can just run an O(N) graph search algorithm,
bfs/dfs to get the updated min/max of every component. Final complexity is O(N3) with
adj matrix, O(N?) with adj list.

Full Solution: We need a quicker way of deleting edges and querying (sublinear time
for each). Deleting edges is quite hard so we solve the problem in reverse. Instead of
starting with one fully connected component, we start with each individual node as its
own component. If we go through the list of deletions in reverse, each edge deletion
will now become an edge addition.

LCC 20 Contest 2 J5 - AQT'’s Tree Cont.

How do we efficiently connect two components? Since we don't really need to know the
exact structure of the graph (we only need the max, min, and nodes in each component),
we can use a disjoint set (union find) data structure. We can merge two components
quite easily as the max of the resulting component is just the max of the maxes of the
two components. By storing a global range variable, we can find the maximum range
across all of the components after every edge addition. Final time compIeX|ty O(N log N)

0000 - 99099

or less.

LCC 20 Contest 2 S1 - Momentum

An object will “keep going” if it has a strictly higher momentum than the object it
collides with. That means for every object we must count the number of elements that

are strictly less than it.

This can be accomplished by sorting the N elements a, and maintaining the number of

elements less than a.

Time complexity: O(NlogN)

LCC 20 Contest 2 S2 - Squares? Nah.

A point is filled in correctly if it is on the edge of the circle. We can use our equation for
the circle, sqrt(x*+y?) = r to answer each query. Make sure to round your answer as the

circle is plotted on an integer coordinate plane.

This solution works due to the constraints of the problem R, (1<R<1000), otherwise
there may be issues with precision.

LCC 20 Contest 2 S3 - Alan’s Got Cak

First Subtask: Binary search for the answer. We greedily try to find a partitioning that
satisfies the current condition in the bsearch. For example, let'’s say we are currently
trying to see if an array can be partitioned into subarrays where the sum in each
subarray »>= x. For a linear array, we can maintain a running sum. When the sum >=x, a
new subarray can be started and the sum will be reset. This array will work if the
number of partitions made using this greedy algo is >= K.

Since the array is circular, every rotation of the array will be checked in the worst case. It
might help to double the array. Since there are N possible rotations and checking if a
rotation is possible is O(N). This gives a final complexity of O(N“log A)

LCC ‘20 Contest 2 S3 - Alan’s Got Cake &2 Cont.

Full Solution: We use an array next[] to store the index after the first position in which
the subarray sum exceeds x. We realize that if we continuously jump from an index,
and end up at the position that is <= to the original index, this is the optimal partitioning
starting at that index. The maximal number of partitions made is the number of jumps
taken. Instead of searching naively for how many jumps can be made starting at an
index, we can precompute every 2' jump from an index using a sparse table.
Precomputing takes O(N log N). Searching from an index takes O(log N).

Final Complexity: O(N log N'log A_)

X

2T K N K TN)
012161913

oy
no
(o)}
N}
Lo

LCC 20 Contest 2 S4 - Gamer Alan

Let f(m,k) be the number of ways for Alan to rank up for the first time after playing exactly m

games given it takes him k games to rank up. Our answer is
n+ § f("la k)p# of wnmq# of l\)asCh(,n - ”)
m<n

m—k
2

Some simple algebraic manipulation gives us # of wins = ™% and # of losses =

. Thus, to

find the answer we just need to be able to evaluate f(m, k) quickly.

Let’s interpret Alan’s ELO over time as an integer lattice path. For f(m,k) we are interested
in the number of paths that intersect y = k for the first time at z = m. This is equivalent to the
number of paths of length m — 1 that end at y = k£ — 1 and do not intersect y = k (since we just
add a win to the end).

The total number of paths of length m — 1 that end at y = k — 1 is (m=a), so f(m,k) =

of losses.

(mel) — g(m, k) where g(m, k) is the number of paths of length m — 1 that end at y = k — 1

of losses.
but intersect y = k at some point before m — 1.

Consider the first time some given path intersects y = k. Let’s invert this prefix of the path

(win — loss, loss — win). Note the number of losses we now have is (# of losses + k).

Now consider any path with that number of losses, we can find the first time it intersects y = —k,
and invert that prefix of the path. Note that the new path we get is a path that ends at y =k — 1

but intersects y = k at some point.

Thus, there is a bijection between these "bad” paths and the paths with number of losses # of losses+
k. Therefore f(n, k)= (mel) — (# el) and we are done.

of losses. of losses+k

LCC 20 Contest 2 S5 - AlanLiChess2004

‘g {X)‘I) :X‘/Z+X,y—2'+x ly ty
Wen i
"ot [eoglepy)”
(x o) 22
9 %y =" ‘I-F()!,c,)..x(y ;x + x5t @ 4l % A wbey
=Xl (7 1) ty(2a) "+1)
Vaat; [Inta 2:.*5.] g (Kﬁ)

949 = S((x(ﬁ)(a‘*m) (V(V’H)(x"él\)
S)i FOMENE ()9 (S)
[mq m]d(x”) = z ((ao)(‘)’ ”J:’X)

l* + =
236ty =2ota
445, 425, =2nth
0%, 4n O_‘.Jgﬂ‘ﬁ
o’_ vty 3.‘ n-.

?‘fx‘r"x/'} £ x° 7+x1t7

LCC 20 Contest 2 S5 - AlanLiChess2004

SO LOEE))

Ja 1
QJ b 2 lnthonti
2z
Osjols(ﬁ'x
(2% RY) %s.c\"‘
o(n lfz ofn) +

=3(0)(s u())(z(,x" \

=0
Jofz :_
Tz

O‘_)‘

oz)

0% 5
assh—v < 4.

tadns

)
—_ n

