Lowest Common Ancestor

By Max, Peter, Kenneth, and ChrisT

Trees

- Trees are a type of graph where there is exactly one path between any two nodes
- Trees are a common type of graph you may find on CS problems
- There are special algorithms that apply to tree graphs
- Reflect many real-life examples
- Best way to connect nodes using the least amount of edges
- https://csacademy.com/app/graph_editor/

Trees

- Rooted vs Unrooted representation
- Same tree with different visualizations, useful for applying algorithms
- Rooted Tree
- One node is designated as the root

Unrooted

- Each node in the tree has a parent and a child node
- Exceptions:
- Leaf node has no child node
- Root node has no parent node
- e.g. Family Tree

LCA

- A common query that must be completed is finding the LCA (lowest common ancestor) of a rooted tree
- The lowest node, height-wise, of the tree that contains nodes A and B

HEIGHT

LCA

- Why is the LCA useful?
- Often, problems involving trees will ask you to perform some query on a path
- Finding the LCA enables you to split the query into more manageable parts
- Any path from nodes $u->v$ can be split into $u->\mid c a(u, v)->v$
- Then we can answer queries for the individual paths u-> Ica(u,v) and Ica(u,v) \rightarrow v and combine them to obtain the final result
- For example, how would we find the distance between any two nodes in a tree efficiently?
- Define dis[u] to be the distance from the root (if unrooted tree, just root arbitrarily) to the node u
- Then, the distance between u and v can be found by calculating $(\operatorname{dis}[u]-\operatorname{dis}[\operatorname{lca}(u, v)])+(\operatorname{dis}[v]-\operatorname{dis}[\operatorname{lca}(u, v)])=\operatorname{dis}[u]+\operatorname{dis}[v]-2$ * $\operatorname{dis}[\operatorname{lca}(u, v)]$

Euler Tour LCA

- The Euler Tour is similar to DFS order, used to linearize a tree
- In DFS, every time you enter or exit a node, append it to the Euler Tour
- Make an array storing the height of every node in the Euler Tour
- The RMQ between nodes a and b in that array is the height of the LCA
- Instead you can find the index of the RMQ to find the LCA

Euler Tour: 1, 3, 5, 8, 5, 6, 5, 7, 5, 3, 4, 3, 1, 2, 1

Height: $0,1,2,3,2,3,2,3,2,1,2,1,0,1,0$

Binary Lifting

- For every node i, precompute its 2^{0}-th, 2^{1}-th, 2^{2}-th, ... , 2^{j}-th parent in an array p[i][j]
- For every node i, precompute its height from the root in an array h[i]
- To find the LCA of 2 nodes a, b :
- Make sure a and b have the same height. If one is lower than the other, use the parent array to decrease its height to the same as b
- If $a==b$, then return a
- Do:

■ Search for the highest j such that $p[a][j]$!= $p[b][j]$

- \quad Set a to $p[a][j]$ and b to $p[b][j]$

■ while there exists a j

- return $\mathrm{p}[\mathrm{a}][0$]

Practice Problems

- https://mcpt.ca/problem/treedistance
- https://old.yosupo.jp/problem/Ica (check your Ica implementation works)

LCA + Other Stuff

- https://dmoj.ca/problem/coci19c5p4 (difference array on tree)
- https://dmoj.ca/problem/acc2p3 (sparse table maintains other info)
- https://dmoj.ca/problem/bbc08b (directing edges, good editorial)
- https://dmoj.ca/problem/roadredirection (directing edges, requires ds)
- https://dmoj.ca/problem/uts015p5 (mst)
- https://dmoj.ca/problem/inaho8 (... good luck)
- https://www.acmicpc.net/problem/16074 (mst + Ica)

