
Lowest Common Ancestor

By Max, Peter, Kenneth, and ChrisT



Trees
● Trees are a type of graph where there is exactly one path between any two nodes
● Trees are a common type of graph you may find on CS problems
● There are special algorithms that apply to tree graphs
● Reflect many real-life examples

○ Best way to connect nodes using
the least amount of edges

● https://csacademy.com/app/graph_editor/

https://csacademy.com/app/graph_editor/


Trees
● Rooted vs Unrooted representation
● Same tree with different visualizations, 

useful for applying algorithms
● Rooted Tree

○ One node is designated as the root
○ Each node in the tree has a parent and 

a child node
○ Exceptions:
○ Leaf node has no child node
○ Root node has no parent node
○ e.g. Family Tree

Unrooted

Rooted



LCA
● A common query that must be completed is finding the LCA (lowest common 

ancestor) of a rooted tree
○ The lowest node, height-wise, of the tree that contains nodes A and B



LCA
● Why is the LCA useful?
● Often, problems involving trees will ask you to perform some query on a path
● Finding the LCA enables you to split the query into more manageable parts
● Any path from nodes u -> v can be split into u -> lca(u,v) -> v
● Then we can answer queries for the individual paths u -> lca(u,v) and lca(u,v) -> v 

and combine them to obtain the final result
● For example, how would we find the distance between any two nodes in a tree 

efficiently?
● Define dis[u] to be the distance from the root (if unrooted tree, just root arbitrarily) 

to the node u
● Then, the distance between u and v can be found by calculating 

(dis[u] - dis[lca(u,v)]) + (dis[v] - dis[lca(u,v)]) = dis[u] + dis[v] - 2 * dis[lca(u,v)]



Euler Tour LCA
● The Euler Tour is similar to DFS order, used to linearize a tree
● In DFS, every time you enter or exit a node, append it to the Euler Tour
● Make an array storing the height of every node in the Euler Tour
● The RMQ between nodes a and b in that array is the height of the LCA
● Instead you can find the index of the RMQ to find the LCA

Euler Tour: 1, 3, 5, 8, 5, 6, 5, 7, 5, 3, 4, 3, 1, 2, 1

Height: 0, 1, 2, 3, 2, 3, 2, 3, 2, 1, 2, 1, 0, 1, 0



Binary Lifting
● For every node i, precompute its 20-th, 21-th, 22-th, … , 2j-th parent in an array p[i][j]
● For every node i, precompute its height from the root in an array h[i]
● To find the LCA of 2 nodes a, b:

○ Make sure a and b have the same height. If one is lower than the other, 
use the parent array to decrease its height to the same as b

○ If a == b, then return a
○ Do: 

■ Search for the highest j such that p[a][j] != p[b][j]
■ Set a to p[a][j] and b to p[b][j]
■ while there exists a j

○ return p[a][0]



Practice Problems
● https://mcpt.ca/problem/treedistance
● https://old.yosupo.jp/problem/lca (check your lca implementation works)

LCA + Other Stuff

● https://dmoj.ca/problem/coci19c5p4 (difference array on tree)
● https://dmoj.ca/problem/acc2p3 (sparse table maintains other info)
● https://dmoj.ca/problem/bbc08b (directing edges, good editorial)
● https://dmoj.ca/problem/roadredirection (directing edges, requires ds)
● https://dmoj.ca/problem/utso15p5 (mst)
● https://dmoj.ca/problem/inaho8 (... good luck)
● https://www.acmicpc.net/problem/16074 (mst + lca) 

https://mcpt.ca/problem/treedistance
https://old.yosupo.jp/problem/lca
https://dmoj.ca/problem/coci19c5p4
https://dmoj.ca/problem/acc2p3
https://dmoj.ca/problem/bbc08b
https://dmoj.ca/problem/roadredirection
https://dmoj.ca/problem/utso15p5
https://dmoj.ca/problem/inaho8
https://www.acmicpc.net/problem/16074

