
Contest & LCC Takeup

By Max, Peter, Kenneth, and ChrisT

Graph Theory P1: Zipline Bonanza
A stacked graph, similar to the ziplines, will consist
of two symmetrical, connected graphs that are
stacked on top of each other. The graphs will then
be connected vertically to represent the poles
which connect corresponding top and bottom
layers.

First, consider the number of nodes. One layer of
the graph contains half the total nodes, so we know
N must be even.

Graph Theory P1: Zipline Bonanza
Now that we know the constraints for N, let’s figure out
the constraints for M.

We see that there must be N edges to connect the two
layers of the graph vertically. Additionally, the top and
bottom graph must be symmetrical. Therefore we have
(M-N)/2 edges for each layer of the graph.

Graph Theory P1: Zipline Bonanza
The final important condition is that each layer must be a connected graph, but there can
at most be one edge between any two nodes.

Let X be N/2, or the number of nodes in each layer. We can then how that the minimum
amount of edges to create a connected graph is X-1.

Now let us figure out the maximum number of edges we can fit. Node 1 can have X
connections to the other nodes. Node 2 can then have X-1 connections. Thus, the
maximum number of edges is X + (X-1) … + 2 + 1, which can be rewritten as X*(X-1)/2

We end up with two conditions to satisfy for a stacked graph:

N must be even and X - 1 <= (M-N)/2 <= X*(X-1)/2

Graph Theory P2: Towns
This is a modified MST, where the distance between 2 points is min(∆x, ∆y).

The naive solution would be to create O(N2) edges and then compute the MST, for a
running time of O(N2logN).

To get the full solution, notice that it is never optimal to connect 2 points if there is 1
between them (between meaning inside the rectangle formed by the 2 points).

Therefore, only O(N) edges are required.

Time complexity: O(NlogN)

This problem involves querying the maximum subarray sum on a path.

First consider how to combine 2 segments to get the maximum subarray sum of the
final segment. There are 2 cases:

In the 1st case, the new maximum sum subarray is part of both segments. In the 2nd
case, it is part of only 1.

Graph Theory P3: Peter's Snazzy Sock Shopping
Spree

https://mcpt.ca/problem/socks
https://mcpt.ca/problem/socks

The 2nd case is easy to deal with (simply store the maximum subarray sum of the
previous 2 segments).

To check for the 1st case, notice that we can split the new maximum subarray sum into
a left part and a right part. The left part is the maximum sum suffix, and the right part is
the maximum sum prefix (the prefix/suffix with the largest sum).

Therefore, to merge 2 segments, maintain the maximum subarray sum, and both the
maximum sum prefix & suffix.

Graph Theory P3: Peter's Snazzy Sock Shopping
Spree

https://mcpt.ca/problem/socks
https://mcpt.ca/problem/socks

For the solution, use binary lifting to find the lowest common ancestor. In addition to
storing the 2ith parent in the sparse table, store the previously mentioned quantities of
the path from the node to the 2ith parent (be careful for off-by-one errors and to not
accidentally make overlapping paths). Use the same binary lifting technique to
combine the individual segments together to get the entire path.

Time complexity: O(NlogN)

Challenge: Solve with updates >:).

Graph Theory P3: Peter's Snazzy Sock Shopping
Spree

https://mcpt.ca/problem/socks
https://mcpt.ca/problem/socks

LCC ‘20 Contest 5 J1 - Tracy the Chat Filter
Loop over each word and check if it is made completely of uppercase letters. This can
be implemented in a variety of ways.

One way would be to convert each character using ASCII values. You could then see if
a character’s value is less than 91 making it an uppercase character (this works
because the input only contains letters).

In Python, you could use str.isUpper() to check if a word is fully capitalized.

Keep a counter of the total number of words and the number of fully capital words,
then output accordingly.

LCC ‘20 Contest 5 J2 - Puzzle Streaking
Implementation problem.

Loop over each of the results (AC or WA) and keep count of Justin’s streak. Based on
the conditions change Justin’s point total. Adding points for AC or when he reaches a
streak. Removing points for WA.

If his points ever reaches negative, end the loop and output 0. Otherwise, print his final
point total.

LCC ‘20 Contest 5 J3 - Ping Difference
Let us start by analyzing the problem statement.

Where K is given in the input and P is an arbitrary value. Essentially, the data moves in
magnitudes of a power. To help us visualize this, let’s imagine a scenario where K = 2 P = 7

The data travels back and forth with exponentially smaller distances.

LCC ‘20 Contest 5 J3 - Ping Difference
Expanding on that, we can show that

xn >= xn-1 + xn-2 … + x1 + 1

for all bases x > 1

Thus, it can be shown that whenever the data jumps in a direction, it must go towards
the destination. If goes away from the destination, the consequent jumps will never be
enough to go back in the other direction.

Once we find the minimum value P that allows for the data to reach the destination,
we can just simulate the jumps, moving closer to the destination each time.

LCC ‘20 Contest 5 J3 - Ping Difference
Proof xn >= xn-1 + xn-2 … + x1 + 1 for all bases x > 1

S = xn-1 + xn-2 … + x1 + 1

xS = xn + xn-1 … + x2 + x

xS = S - 1 + xn

xS - S + 1= xn

S(x-1) + 1 = xn

As x > 1 we can see that S + 1 <= xn

LCC ‘20 Contest 5 J4 - Alan’s Rectangle
Notice that aij = 1. Therefore, the problem reduces to the sum of areas of all possible
rectangles with dimensions ≤ K.

For a rectangle with dimensions x and y, its area will be A = xy. There will also be
(N-x)(M-y) occurrences of this rectangle. Therefore, the answer is given by:

Because the dimensions of the rectangle are bounded by min(n, k) and min(m, k).

Notice that by the linearity of summation, we can split the composition of summations
into a product of 2 summations:

This solution is O(min(n, k)min(m, k)), which yields 50% of the points. To obtain full
points, it is required to calculate both sums in O(1) time or similar. This is left as an
exercise to the reader.

LCC ‘20 Contest 5 J4 - Alan’s Rectangle

LCC ‘20 Contest 5 J5 - O-Mo-Te-Na-Si
We want to find max(abs(sum of ai) + abs(sum of bi)) for some subset of size K

Subtask 1: Loop through all possible combinations of mixtures.

Time complexity: O(N * 2N)

Subtask 2:

If all the values were positive, we would be able to take the K largest values of (ai + bi).

To consider negative values, think about trying to minimize one of the traits. For example, if
we want to minimize the b’s, find the sum of the K largest values of (ai - bi).

There are only 4 cases to consider, (ai + bi), (ai - bi), (-ai + bi), (-ai - bi). Finding the K largest
values takes O(N log N).

LCC ‘20 Contest 5 S1 - Herbs and Ghouls
The most difficult part of this problem is likely processing the input. After extracting
your ranges from the input, you can iterate through a boolean array and set the herbs
that have been eaten. Note that there is no overlap in the ranges, as given by the
problem statement, so iterating through the ranges will take O(N) time.

Afterwards, you can loop through the boolean array again. Keeping track of where a
patch of uneaten herbs starts/ends and outputting the ranges.

LCC ‘20 Contest 5 S2 - Facials!
In order for something to be considered a face, it must have 2 eyes and an exactly
matching mouth to go with it. Every pair of eyes has 0 pixels in between them, so to
find all pair of eyes for each row can be done in O(W) using a nested for loop or
2-pointers.

After finding a pair of eyes, use trigonometry to calculate the exact location and size of
the mouth. If there is a group of pixels that exactly matches this mouth, then this is
considered a face. If there are erroneous adjacent pixels, then it is not a face.

Do this for every pair of eyes to get the solution.

LCC ‘20 Contest 5 S3 - Larry's Paradox
Since Larry can only drink up to 6 energy drinks, we can loop over the number of
energy drinks he drinks, and determine if it is possible for him to complete all his
activities in N (24+e) hour days.

For a fixed day length, we could consider every order in which Larry could conduct his
activities, and for each order determine how many days it would take him to do them in
that order. If any order takes at most N days, then Larry’s Paradox can be satisfied with
this day length, otherwise it cannot.

Unfortunately, this solution is O((L+S)!) which would take about 1e18 operations in the
worst case, clearly way too slow.

LCC ‘20 Contest 5 S3 - Larry's Paradox
To optimize this solution, we will do a dp over subsets. Let dp[mask] = {a,b}, where a is
the minimum number of days that Larry must fully spend to complete the activities in
mask, and b is the minimum number of hours Larry must have spent so far in the
current day.

To transition between states, we consider the last activity that Larry did, making sure to
start a new day if necessary.

The final time complexity is O((L+S)2(L+S)), which passes comfortably in the time limit.

One may note that when N=2, this problem reduces to a variant of knapsack, leading us
to believe that we cannot do much better than this.

LCC ‘20 Contest 5 S4 - Ninjaclasher's Mobs
We are given N points on the plane, each one of M colours. We want to determine if
there is some convex polygon that contains only points of one colour.

If we take a convex polygon around points of colour C, it is clearly optimal to take the
convex hull of said points, otherwise we could move our polygon inward and still cover
all the points. Thus, the problem reduces to determining if any point of a different colour
is contained in the convex hull formed by the points with colour C.

We can determine if a point is in a convex polygon quickly by binary searching over the
sides of the polygon, and using cross product to determine which direction the point is
relative to the current side.

LCC ‘20 Contest 5 S5 - Segment Tree Beats
Query: count how many ai = x.
Updates: add x mod (1e5+3) / multiply by x mod (1e5+3). Done on ranges.

The name of the problem is a red herring.

Subtask 1: Brute force. O(N)

Subtask 2: Sqrt decomposition (sqrt(N) blocks of size sqrt(N)). Each block will store the
frequencies of each value. Blindly applying the updates on the blocks will not yield a
desired time complexity as we need to update a block in sublinear time.

LCC ‘20 Contest 5 S5 - Segment Tree Beats
Along with the frequencies, also store 2 variables p and q for each block. Instead of updating
the frequencies of elements in a block, we will update the values of p and q by representing
the value of an element as pai+q.

Updates for multiplication:
Blocks: x*(pai+q) = x*pai+x*q. The value of p is now x*p and the value of q is now x*q.
Single elements: We want to avoid changing the values of p and q of the block the element is
in. This can be done by considering the equation x*(pai+q)=pbi+q (mod 1e5+3), where ai is the
original value and bi is the updated value.

There is an edge case for multiplication by zero. To account for this case, think about lazy
propagation for segment trees and how it can be applied to sqrt decomp. Updates for addition
and queries are left for the reader to implement.

“Similar” problem that is simpler: https://dmoj.ca/problem/ecoo20p4

https://dmoj.ca/problem/ecoo20p4

