
LCC Takeup

By Max, Peter, Kenneth, and ChrisT

LCC ‘20 Contest 3 J1 - Cup Swapping
Start with an empty array of 3 elements, and represent the ball by setting the
corresponding element of the array.

For each of the K swaps, swap 2 the elements in the array. Swapping can be done with
a temporary variable to assign their values to each other.

Then loop through the 3 elements of the array to find out where the ball is.

Alternatively, use 3 variables (for the first, second, and third cup) instead of an array.

LCC ‘20 Contest 3 J2 - Tracy and Big Mac(beth)
Store every hamburger in an array or a string. In many languages, this can be done
with a method called “split()”.

Add 1 if the first element is a bun and add 1 if the last element is a bun. Notice that the
only element of an array of size 1 is the first and last element. Loop through every
element that isn’t the first or last and subtract 1 for every bun.

Loop through every element and add 1 for each meat, up until the first cheese. This can
be done by breaking out of the loop when seeing a cheese.

Loop through every element and maintain a boolean variable for whether there was
sauce.

Loop through every element and add 1 for every pickle and subtract 1 for a feces or rat.

LCC ‘20 Contest 3 J3 - One-Trick Pony
Notice how the pickrates and winrates are given as ratios.

The pickrate of champion i, Pi = p[i] / ∑p[i]

The winrate of champion i, Wi = w[i] / ∑w[i]

Calculate the expected value (average winrate) for all champions: ∑Pi * Wi

Now calculate the expected value of all champions except champion j:

Ej = (∑Pi - Pj) / (∑Wi - Wj)

Ban the champion that maximizes Ej.

LCC ‘20 Contest 3 J4 - Chain Lightning
Problem Statement:
You are given an array of elements with a position and a point value. The array is sorted by position. A
"chain" of elements is defined as a continuous sequence where the distance between elements is at
most a distance of x and contains at most k elements. Find the maximum point value of a singular chain.

Notice as all of the given point values are positive, for a given chain of elements where
one is a subset of another. You only have to consider the maximum chain. For example,
taking elements 1, 2 and 3 is always more more ideal than taking just elements 2 and 3.

LCC ‘20 Contest 3 J4 - Chain Lightning
From our previous observation, we reduce the number of operations we have to
complete as we don’t have to check subsets. What do we do in the case where the set
of elements in reach is greater than K?

Let’s say K is 3 and we have 5 elements in reach. The possible subsets would then be
[1, 2, 3], [2, 3, 4] and [3, 4, 5]. We add and remove one element from each subsequent
subset. To complete the sum query in O(1) time, sliding window or PSA can be utilized.

The maximum of all sum queries is our answer.

LCC ‘20 Contest 3 J5 - Raytracing
First, notice that the edges of the rectangle are either horizontal or vertical, and that a
rectangle has 4 edges.

We will find the entering and exiting times by calculating the time it takes for the line
Andy makes to intersect with each of the edges. Ignore any of the edges that Andy
does not cross.

To see when Andy will cross an edge, remember that the edges are either horizontal
or vertical. For example, to find out the time to cross a vertical edge, divide the
horizontal displacement to the edge by Andy’s horizontal velocity.

LCC ‘20 Contest 3 J5 - Raytracing

Sort the times it takes for Andy to cross each edge (ignoring the edges Andy does not
cross) in an array. Note that the length of the array will always be even and not greater
than 4.

By dividing the horizontal displacement by its velocity we can find the amount of time until a point is
on the same x-coord as the start of the box. With the given time we can calculate whether or not it
intersects, by increasing our y-coord accordingly. Illustrated above are two possible cases.

LCC ‘20 Contest 3 J5 - Raytracing

If Andy does not start inside the rectangle or if Andy enters and exits within the same
second, print “-1 -1”.

If Andy starts inside the rectangle, then the exiting time is the first nonnegative value.
Remember that an integer valued exiting time means that it is still in the rectangle.

If Andy starts outside the rectangle, then the entering time is the first valid line
intersection, and the exiting time is the second valid line intersection. Remember that
some of the line intersections are not actually on the rectangle.

LCC ‘20 Contest 3 S1 - Peculiar Polling

LCC ‘20 Contest 3 S1 - Peculiar Polling
Consecutive votes for the same candidate count as one vote, so only count the vote if
the previous letter is different than the current one.

ABBABBABBABBABBABBAA → ABABABABABABA

Loop through and increment a counter if s[i] != s[i-1]

LCC ‘20 Contest 3 S2 - Water Buckets
We are given updates of the form (L,R,c) → a[i] += c for all L <= i <= R, and we want to
determine the first time a[i] >= k for each i. By line sweeping over the indices, we can
maintain a list of (c,t) pairs for each index that indicates a[i] += c at time t. Once we
have this, we merely want to binary search for the first time such that the total added
by that time is >= K. You can do this with a binary-indexed tree or a segment tree.

LCC ‘20 Contest 3 S3 - Snake
The intended solution to this problem is brute force. Consider all starting points, and
maintain the set of visited cells while doing some kind of backtracking. Implementation
may differ, but basically anything passes for these constraints.

LCC ‘20 Contest 3 S4 - Minimum Maximum Edge
Consider binary searching over the answer ‘x’. For each edge, we know the number of
operations we must use on this edge for its weight to be <= x, ‘c’. Clearly, the optimal
edges to take are the ones with minimal c. Specifically, we want to take the minimum
spanning tree weighted by c. If the sum of the c values is <= K, then the answer of x is
possible, otherwise it is not.

LCC ‘20 Contest 3 S5 - Larry and 3
For 6 <= n < 10, the intended solution is to solve it by hand. Alternatively, you can write a
brute force locally and determine the solutions that way.

For n >= 10, we claim the minimal number of edges is 3n-15. We claim that any graph
with n >= 10 that satisfies the properties has a subgraph that is isomorphic to the
Petersen graph (pictured below), and that to add k nodes to the Petersen graph such
that it still satisfies the properties requires at least 3k edges. Proof is left as an exercise.

LCC ‘20 Contest 3 S5 - Larry and 3

LCC ‘20 Contest 3 S5 - Larry and 3

CCC S1
Loop over every fence piece and add (a+b) * w/2 to the answer.

Make sure you use a floating-point data type and to format output correctly
cout << fixed; in c++

CCC S2
Flipping the colour of a row twice reverts it back to its original colour. Therefore, we
only need to consider the number of times a row has been flipped mod 2.

Since MN <= 5e6, looping through all the cells after processing the colour changes
suffices.

If we let row[i] represent the number of times the ith row has been flipped, and col[j]
the number of times the jth column has been flipped..

A cell (i,j) is coloured gold if (row[i] + col[j]) mod 2 = 1.

There exists a method of counting that doesn’t require looping through all the cells at
the end. This is left as an exercise for the reader.

CCC S3
Person i starts at pi, takes wi seconds to walk 1 meter, and can hear within di meters.

We can represent the time it takes for them to reach the position x as a piecewise
function fi(x).

CCC S3
We notice that each of these functions is a “convex”
function.

Therefore, the total sum of all functions is also a convex
function.

Finding the minimum value can be done using “ternary”
search.

Alternatively you can use binary search or line sweep.

CCC S4
Key points:

- Find the shortest way to get from station 1 to N for each day
- There is only one subway train
- Visits the stations in a defined order
- Two stations will switch orders each day
- There are walkways that we can take that stay the same

CCC S4
Let us consider finding the shortest path for a given day before we consider the
updates. The first observation is that it is never more optimal to return to the subway
after getting off. There is only 1 train so you always have to wait for it to arrive at your
current station before you can take it. This is the same as taking the subway from
station 1.

The minimum time can then be represented as

min{a1, … , aN}

where ai is the subway time from 1 to i + walking time from i to N

CCC S4
With this observation the problem boils down to finding the shortest walkway path
from the each station to station N as the time it takes to go from station 1 to i via
subway is given based on the initial order of the stations.

We can use BFS to find SSSP to station N from each station. Then we can iterate over
each station and find the minimum.

Now that we’ve found the minimum for one day, how does this translate to updates
between days?

CCC S4
The second observation to make is that only two times change when an update is
made. Every other station still has the same position and the walkways remained
unchanged.

After performing the two updates, we want to find the minimum time out of all of the
stations without recalculating everything. One possible solution is with segment tree
as we can update the time for two points while maintaining range minimum. A simpler
implementation is using map/multiset.

CCC S4
Maps/multisets allow us to maintain a sorted array while performing updates.

To perform an update, we remove the old times and add the two new ones. We can
then lookup the first element in the map/multiset to find the minimum time after each

update.

CCC S5
Problem: construct an array that satisfies some requirements, xi, yi, zi means the gcd of
all the elements in the subarray from xi to yi should equal zi .

First Subtask: 1 <= zi <= 2.

We see that the elements covered by requirements with zi = 2 should all be 2. The
requirements with zi = 1 need at least one 1 in the corresponding subarray. After
placing all the 2s, we can check if the remaining constraints can be satisfied fairly
simply.

CCC S5
Full Solution: 1 <= zi <= 16.

For an element to be covered by ranges with gcds of zi1, zi2, … , zik means it should be
divisible by all of them. Since each element should be less than some threshold (1e9),
the smallest element that is a multiple of all of these values is lcm(zi1, zi2, … , zik).

We can notice that the constraints are still fairly small, zi <= 16, so we can just maintain
a “difference array”.

After constructing our array, we still need to check it satisfies all of the requirements,
one solution is constructing a sparse table that can query range gcds.

Alternatively, some people used a segment tree that can handle both range lcm
updates and range gcd queries.

